Simulated Microstructural Evolution and Design of Porous Sintered Wicks

نویسندگان

  • Karthik K. Bodla
  • Suresh V. Garimella
چکیده

Porous structures formed by sintering of powders, which involves material-bonding under the application of heat, are commonly employed as capillary wicks in two-phase heat transport devices such as heat pipes. These sintered wicks are often fabricated in an ad hoc manner, and their microstructure is not optimized for fluid and thermal performance. Understanding the role of sintering kinetics—and the resulting microstructural evolution—on wick transport properties is important for fabrication of structures with optimal performance. A cellular automaton model is developed in this work for predicting microstructural evolution during sintering. The model, which determines mass transport during sintering based on curvature gradients in digital images, is first verified against benchmark cases, such as the evolution of a square shape into an areapreserving circle. The model is then employed to predict the sintering dynamics of a sideby-side, two-particle configuration conventionally used for the study of sintering. Results from previously published studies on sintering of cylindrical wires are used for validation. Randomly packed multiparticle configurations are then considered in two and three dimensions. Sintering kinetics are described by the relative change in overall surface area of the compact compared to the initial random packing. The effect of sintering parameters, particle size, and porosity on fundamental transport properties, viz., effective thermal conductivity and permeability, is analyzed. The effective thermal conductivity increases monotonically as either the sintering time or temperature is increased. Permeability is observed to increase with particle size and porosity. As sintering progresses, the slight increase observed in the permeability of the microstructure is attributed to a reduction in the surface area. [DOI: 10.1115/1.4026969]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphological and physical study of Cu-Ni sintered porous wicks used in heat pipes and fuel cells

Recently, the use of renewable energies has increased to  environmental pollution, limitation of fossil energy resources and energy security  One of the means that enable us to use such energies is fuel cells (FC). However, there are many problems  in the commercialization of FC from an economically and operation perspective. One of the most important problems is heat management. New heat pipes...

متن کامل

3D Reconstruction and Design of Porous Media from Thin Sections

Characterization and design of fluid-thermal transport through random porous sintered beds is critical for improving the performance of two-phase heat transport devices such as heat pipes. Two-dimensional imaging techniques are quite well developed and commonly employed for microstructure and material characterization. In this study, we employ 2D image data (thin sections) for measuring critica...

متن کامل

Simulating Microstructural Evolution and Electrical Transport in Ceramic Gas Sensors

An integrated computational approach to microstructural evolution and electrical transport in ceramic gas sensors has been proposed. First, the particle-flow model and the continuum-phase-field method are used to describe the microstructural development during the sintering of a prototype two-dimensional film. Then, the conductivity of the sintering samples is calculated concurrently as the mic...

متن کامل

Visualization of vapor formation regimes during capillary-fed boiling in sintered-powder heat pipe wicks

The current study investigates capillary-fed boiling of water from porous sintered powder wicks used in emerging high-effective-conductivity vapor chamber heat spreaders intended for management of hot spots with heat fluxes exceeding 500 W cm . Characterization of 1 mm thick wicks composed of 100 lm sintered copper particles is performed in a test facility which replicates the capillary feeding...

متن کامل

Porous copper template from partially spark plasma-sintered Cu–Zn aggregate via dezincification

Present work deals with the preparation of spark plasma-sintered Cu–Zn aggregate (5, 10 and 20 wt% Zn) with interfacial bonding only starting from elemental powders of Cu and Zn (99⋅9% purity) and subsequently making of porous template of Cu by dezincification. Sintering is done so as to achieve only interfacial bonding with the aim to maintain maximum potential difference between the Cu and Zn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014